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Abstract—The behavioral modeling of a power amplifier (PA)
is an indispensable step in the project of a radio frequency
transmission system for the PA linearization, necessary for its
operation into high input power levels, where signal distortions
are not despicable. In this research, the applied model was the
cascade between two Volterra series, which demand a parameter
optimization step due to the nonlinear dependence between
the block coefficients of the model. This paper investigates the
influence of the damping choice for the Levenberg-Marquardt
(LM) optimization method, into the relation between time elapsed
and error returned by the optimization method. A LM derived
method was developed looking for performance improvement.
The new method achieved, for the analyzed set of values,
results on average 0.45 dB better than the builtin MATLAB
function lsqnonlin, with 38% of time reduction in the parameter
identification step.

Index Terms—Levenberg-Marquardt, power amplifier, behav-
ioral modeling, Volterra series.

I. INTRODUCTION

The transmission of data with fidelity and agility is the
primary duty of a wireless communication system. In these
systems, the power amplifier (PA) [1] is the principal device,
responsible to increase the power of the signal to be trans-
mitted. However a non-linearity is introduced by this device
when it’s performed into high power input levels due to the
saturation of its internal transistors and the phase-shift caused
by the input and output impedance matching networks. These
non-linearities compromise its use, causing interference among
neighbor channels and reducing its power efficiency. To fix this
issue, usually the digital pre-distortion (DPD) [2] is employed.

Digital pre-distortion is a linearization method that consists
into the previous application of a signal inverse to that one
applied by the PA, resulting in a linear output response.
For the project of a DPD, a behavioral modeling of the
PA is requested, with high accuracy and low computational
complexity. In this work the employed model was the cascade
between two Volterra series [3].

The model is an improvement of the traditional Volterra
series, a polynomial series with the capacity of reproducing
non-linear responses and memory effects. Due to the con-

catenation of two Volterra series, the model becomes non-
linear in its parameters, and then a method for their extraction
and optimization is required. Heuristics methods should be
avoided due to the accuracy trade off, which goes in opposition
with our objectives. In [3], three methodologies for parameter
extraction were explored: separable least-squares, iterative
inverse problem solution and non-linear programming. In this
work, the non-linear programming method will be applied.
Among the available methods for non-linear parameter op-
timization there are two commonly employed: the Gauss-
Newton and the Levenberg-Marquardt (LM) [4] methods.

This article contributes with the investigation of a non-linear
parameter optimization method derived from LM, through
the application of a damping switchable parameter, using
finite-difference approximations of the Jacobian matrix for
performance improvement [5].

II. THE LEVENBERG-MARQUARDT METHOD

The Levenberg-Marquardt method derives from the Gauss-
Newton method, using linear approximations of the objective
function for the problem optimization. The difference between
the methods is in the introduction of the λ parameter, called
Levenberg-Marquardt parameter or damping parameter. The
method consists into the calculation of dk, a gradient decrease
direction in the function domain, through the relation:

(JT (xk)J(xk) + λkI)dk = −JT (xk)R(xk) (1)

where R(x) is the objective function, J(x) is the Jacobian
matrix of R, JT (x)J(x) is an approach of the Hessian matrix
of R and d is the gradient decrease direction. The damping
parameter was included into the Gauss-Newton method to
turn the Hessian approach always positive defined, and then
reversible. The LM parameter is computed as:

λk =
gTk vk
f(xk)

(2)

for an appropriate choice of vk, where gk = JT (xk)R(xk) and

f(x) =
1

2
∥R(x)∥2. Some choices for λk present in literature



are reported in Table I, while in Table II, a simplified algorithm
of the generic LM method is presented.

TABLE I
DAMPING PARAMETER ACCORDING WITH THE vk CHOICE

Method λk vk

P1 [4]
∥gk∥2

fk
gk

P2 [4] ∥gk∥2 fkgk

P3 [4] ∥gk∥
fk

∥gk∥
gk

P4 [6] ∥R(xk)∥2 = 2fk


2f2

k

p(gk)i
, if (gk)i ̸= 0

0, if (gk)i = 0

P5 [7] ∥R(xk)∥ = 2
√
fk


2
√

f3
k

p(gk)i
, if (gk)i ̸= 0

0, if (gk)i = 0

P6 [8] λk = |gTk vk| max

{
(vk−1)i,

∥∥∥∥∂f(x0)

∂xi

∥∥∥∥}
P7 [9]

2∥gk∥
3k

2fk

3k∥gk∥
, k > 0

TABLE II
PSEUDO-CODE OF THE LEVENBERG-MARQUARDT METHOD

Algorithm: Levenberg-Marquardt
Given x0 ∈ Cn, define k = 0
While the stop conditions are not satisfied:

Compute λk

Get dk , solution of (JT (xk)J(xk) + λkI)dk = −JT (xk)R(xk)
xk+1 = xk + dk
k = k + 1

End

A comparative analysis was performed by [9], comparing
the parameters of the methods P1-P7 through the application
of a set of problems proposed by [10], which proved the best
effectiveness and robustness of the P7 damping parameter in
the time domain.

The software MATLAB has a builtin function, lsqnonlin,
which implements the classic LM method with an adaptive
approach for the damping parameter, proposed by [4]:

Given x0 ∈ Cn, λ0 > 0, α and β > 1, compute dk as in (1),

if R(xk + dk) < R(xk) : xk+1 = xk + dk, λk+1 =
λk

α

else: λk = λk · β, recompute dk

The values utilized by the lsqnonlin function are λ0 = 0.01
and α = β = 10.

III. IMPLEMENTED ALGORITHM

The algorithm was implemented with focus in computation
time reduction and local convergence increasing. In this sec-
tion will be presented the characteristics of the implemented
code that contributes to achieve these goals and the pseudo-
code of the final algorithm.

A. Algorithm characteristic 1: Derivative-free

Due to the size of the target problem (function domain
dimension of the order of dozens or hundreds), the time for the
Jacobian computation becomes a problem. To contour this, the
approximation of the Jacobian matrix using finite-difference
was chosen.

Be ∆R(x, h) a matrix where the element in position (i,j) is
given by:

Ri(x+ hej)−Ri(x)

then, for hk sufficient small, we can consider the approxima-
tion:

J(xk) =
1

hk
∆R(xk, hk)

and then (1) becomes equivalent to:

(
1

h2
k

∆R(xk, hk)
T∆R(xk, hk) + λkI)dk = −

1

hk
∆R(xk, hk)R(xk)

(3)
whose solution is the vector:

dk = −hk(∆R(xk, hk)
T∆R(xk, hk) + h2

kλkI)
−1∆R(xk, hk)R(xk)

(4)

B. Algorithm characteristic 2: Damping Switchable

To increase the convergence of the method, the code was
programmed to switch the damping parameter when a stop
condition would be satisfied, searching for another decrease
direction. The main parameter P7 was chosen as the main
due to its better performance in time and robustness. The
change into the damping parameter can occur up to five times
according with the performance profile, in which:

(λk)i = Pi , where P = {P7, P3, P4, P5, P6, P2}

The damping parameter P1 was not implemented because,
according with [9], it was not able to resolve any problem in
a shorter time.

C. Algorithm characteristic 3: Stop conditions

The stop conditions of an optimization method are usually
the number of iterations, k > kmax, and the gradient of the
objective function, gk < gtol.

Commonly in the nearby of a local minima the algorithm is
trapped on a direction that returns a very small decrease per
iteration. To avoid this problem, it was established an absolute
and relative error decrease stop condition:

∥R(xk)∥ − ∥R(xk+1)∥ < Rtol or
∥R(xk)∥ − ∥R(xk+1)∥

∥R(xk)∥
< Rtol (5)

These conditions cause the switch of the damping parame-
ter, avoiding directions that do not contribute with a significant
decrease and, at the end of the method, avoiding unnecessary
iterations.



D. Pseudo-code of the final algorithm
The proposed algorithm explained in this section will be

referenced from now on as P8. Table III presents a pseudo-
code of the P8 algorithm, which is the sum of contributions of
the three characteristics explained in the previous subsections.

TABLE III
PSEUDO-CODE OF THE P8 ALGORITHM

Algorithm: P8 Levenberg-Marquardt
Given x0 ∈ Cn, hk , gtol, Rtol ∈ R+, define k = 0, i = 0
While Eq. 5 is satisfied, gk < gtol, k < kmax, i < 6:

i = 0
DO:

P = Pi

Compute λk

Get dk , solution of Eq. 3
xk+1 = xk + dk
IF Eq. 5 is not satisfied and i < 6:

xk+1 = xk+1 − dk
i = i+ 1

WHILE Eq. 5 is not satisfied and i < 6
k = k + 1

End

IV. CASE STUDY: PARAMETER IDENTIFICATION OF A
POWER AMPLIFIER BEHAVIORAL MODEL

In this section the cascade model developed in [3] is
presented and numerical experiments are performed in order
to compare the method P8 with the P7 method and the classic
LM method (with adaptive damping parameter) inbuilt in the
lsqnonlin MATLAB function.

A. The Volterra series cascade model for the PA behavioral
modeling problem

A Volterra series is a polynomial series with the ability of
reproducing memory effects. For the radio frequency power
amplifier, the low-pass equivalent Volterra series is a conve-
nient adoption, having the form [11]:

ŷ(n)=

P∑
p=1

M∑
q1=0

M∑
q2=q1

· · ·
M∑

qp=qp−1

M∑
qp+1=0

M∑
qp+2=qp+1

· · ·
M∑

q2p−1=q2p−2

×ĥ2p−1(q1, · · · , q2p−1)

p∏
j1=1

x̂(n− qj1 )

2p−1∏
j2=p+1

x̂∗(n− qj2 ) (6)

where x̂(n) and ŷ(n) are the complex-valued envelopes,
respectively, at the input and output of the PA, (∗) de-
notes the complex conjugate operator, M is the memory
length, P0 = 2P − 1 is the polynomial order truncation
and ĥ2p−1(q1, · · · , q2p−1) are the low-pass equivalent Volterra
kernels.

As the number of parameter in (6) increases quickly with M
and P, a cascade model was proposed in [3], returning results
that prove the best approximation and the complexity reduction
of the cascade model. Figure 1 illustrates the cascade model,
where X1 and X2 are matrices composed by the product
presented in (6) for all index combinations, H1 and H2 are
the coefficient vectors of each series and I(n) and yest(n) are
the output respectively of the first and second blocks.

Fig. 1. Block diagram of two Volterra series in cascade [3]

B. Numerical Experiments

For the nonlinear parameter extraction method, an initial
point is required for the method. In [3], the initial point was
taken by the application of the separable least-squares method
(SLS). In this work, ten random points were generated and
applied into the three optimization functions. The time elapsed
by each optimization was stored and the normalized mean-
square error (NMSE) was computed for all cases, with relation
to a validation dataset, as:

NMSE = 10log

∑N
n=1(y est(n)− y(M1 +M2 + n))2∑N

n=1 y(M1 +M2 + n)2
[dB] (7)

The training and validation data were previously collected
by [12], with a class AB PA with GaN based technology,
excited by a 900 MHz carrier and stimulated by a WCDMA
signal with 3.84 MHz of bandwidth. The choice of the cascade
parameters was done based in the results obtained in [3]. The
selected values were [M1, P1,M2, P2] = [2, 3, 2, 1] ≡ 84
coefficients, which is the first set of parameters that returned
a better result than the best traditional model, with 244
coefficients.

The method P7 was implemented as in [9], with stop
conditions kmax = 150 and gtol = 1e − 4. The method P8
was limited by the same stop conditions, in addition to the stop
condition explained in Subsection III-C, with Rtol = 1e − 3.
The lsqnonlin MATLAB built-in function was also limited by
kmax = 150 and gtol = 1e− 4.

Figure 2 presents the results obtained from this experiment.
Both methods, P7 and lsqnonlin, reached the maximum of
150 iterations. In the first case, error increase can be observed
in the middle of the method, however, if a stop condition was
implemented, then the final error would be significantly higher,
as presented in Table IV.

The difference between the methods in Table IV is exactly
the contribution of the ”damping switchable” implementa-
tion. The results were obtained from the application of the
Volterra cascade model, with parameters [M1, P1,M2, P2] =
[1, 4, 1, 4] ≡ 80 coefficients, into 80 random initial points.
Table IV presents the five best results of the method P8 and the
five worst results of the method P7 with insufficient decreasing
stop condition. For both methods, kmax = 150, gtol = 1e− 4
and Rtol = 1e− 4.



TABLE IV
EXPLICIT CONTRIBUTION OF THE ’DAMPING SWITCHABLE’ IMPLEMENTATION

P7 + insuficcient decreasing P8
∥R(xk)∥ ∥∇R(xk)∥ Iterations NMSE [dB] ∥R(xk)∥ ∥∇R(xk)∥ Iterations NMSE [dB]
1.39E+00 1.67E+00 51 -29.77 1.28E+00 5.83E-01 97 -30.19
5.69E+00 2.31E+01 32 -17.70 1.30E+00 5.41E+00 87 -29.80
3.20E+00 9.01E+00 28 -22.85 1.30E+00 1.02E+00 110 -29.88
1.39E+00 7.19E+00 73 -29.19 1.38E+00 1.36E+00 77 -29.31
2.67E+00 1.99E+01 37 -24.08 1.39E+00 3.99E+00 74 -29.73
3.63E+04 7.99E+05 31 54.48 1.18E+01 8.17E+00 98 -11.09
1.01E+06 2.94E+06 13 74.40 8.80E+00 5.23E+00 51 -13.28
5.80E+06 1.31E+07 7 98.05 2.38E+00 1.29E+01 79 -25.50
1.08E+07 2.81E+07 15 108.47 1.05E+01 3.67E+00 68 -9.10
6.85E+08 9.47E+08 8 131.05 1.70E+00 8.08E-01 142 -27.93

Fig. 2. Comparison of the requested optimization time and NMSE between
three LM optimization methods for ten samples

V. CONCLUSIONS

The analysis of the results evidences that the proposed opti-
mization method is faster in relation to the lsqnonlin MATLAB
function and the simple LM method with damping parameter
P7. The time reduction was, on average, about 38% in rela-
tion to the lsqnonlin function and 32% for the P7 method.
This improvement was a consequence of the absolute and
relative error decrease stop condition adoption, which avoided
iterations that do not contribute significantly. However, this
simple improvement does not contribute for the algorithm
convergence as seen in Table IV, which highlights the need for
a ”damping switcher” that will avoid the premature collapsing
of the optimization method and improve its local convergence.
With the ”damping switchable” implementation, the algorithm
reached results, on average, of −0.45 dB in relation to the
lsqnonlin function and +0.02 dB for the P7 method. The
improvement returned by the P8 method turned it better for
problems such the creation of NMSE curves, which demand
for the training of thousands (or millions) individual model
instances, where the total optimization time was a big problem.
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